Translate

domingo, 1 de junio de 2014

HERRAMIENTAS PARA VERIFICAR EL FUNCIONAMIENTO DE RED ♥

Para verificar el funcionamiento de la red se usan distintas herramientas, están las incluidas en el sistema operativo, por ejemplo:
ipconfig
netstat
nslookup
netsh
ping
tracert
estos comandos te darían una buena idea de donde puede haber un problema si una computadora no se conecta a la red o presenta fallas.

Aparte, si requieres un monitoreo, que ya es algo muy diferente, se usa el protocolo SNMP, que sirve entre otras cosas para reportar el estado de los dispositivos de red a través de traps, por ejemplo, si tu router se desconecta, se reinicia o alguno de sus servicios (internet, mpls etc) se cae, envía un mensaje indicando ésto, y hay muchos programas que dan esa funcionalidad, pero algunos son más completos, por ejemplo, HP Open View, Cisco Works LAN Management Solution, Solar Winds, etc. Aunque estos son programas caros y muy evolucionados y también hay soluciones más simples que para el usuario medio son muy útiles, por ejemplo el network scanner, que creo que te será muy ilustrativo si lo bajas y lo pruebas, es gratuito.

CAPA 7 MODELO OSI EJEMPLO ♥


El nivel de aplicación actúa como ventana para los usuarios y los procesos de aplicaciones para tener acceso a servicios de red. Esta capa contiene varias funciones que se utilizan con frecuencia:

  • Uso compartido de recursos y redirección de dispositivos
  • Acceso a archivos remotos
  • Acceso a la impresora remota
  • Comunicación entre procesos
  • Administración de la red
  • Servicios de directorio
  • Mensajería electrónica (como correo)
  • Terminales virtuales de red

CAPA 6 MODELO OSI EJEMPLO ♥

La capa de presentación da formato a los datos que deberán presentarse en la capa de aplicación. Se puede decir que es el traductor de la red. Esta capa puede traducir datos de un formato utilizado por la capa de la aplicación a un formato común en la estación emisora y, a continuación, traducir el formato común a un formato conocido por la capa de la aplicación en la estación receptora.

La capa de presentación proporciona:

  • Conversión de código de caracteres: por ejemplo, de ASCII a EBCDIC.
  • Conversión de datos: orden de bits, CR-CR/LF, punto flotante entre enteros, etc.
  • Compresión de datos: reduce el número de bits que es necesario transmitir en la red.
  • Cifrado de datos: cifra los datos por motivos de seguridad. Por ejemplo, cifrado de contraseñas. 

CAPA 5 MODELO OSI EJEMPLO ♥

La capa de sesión permite el establecimiento de sesiones entre procesos que se ejecutan en diferentes estaciones. Proporciona:

  • Establecimiento, mantenimiento y finalización de sesiones: permite que dos procesos de aplicación en diferentes equipos establezcan, utilicen y finalicen una conexión, que se denomina sesión.
  • Soporte de sesión: realiza las funciones que permiten a estos procesos comunicarse a través de una red, ejecutando la seguridad, el reconocimiento de nombres, el registro.

CAPA 4 MODELO OSI EJEMPLO ♥

La capa de transporte garantiza que los mensajes se entregan sin errores, en secuencia y sin pérdidas o duplicaciones. Libera a los protocolos de capas superiores de cualquier cuestión relacionada con la transferencia de datos entre ellos y sus pares.

El tamaño y la complejidad de un protocolo de transporte depende del tipo de servicio que pueda obtener de la capa de transporte. Para tener una capa de transporte confiable con una capacidad de circuito virtual, se requiere una mínima capa de transporte. Si la capa de red no es confiable o solo admite datagramas, el protocolo de transporte debería incluir detección y recuperación de errores extensivos.

La capa de transporte proporciona:
  • Segmentación de mensajes: acepta un mensaje de la capa (de sesión) que tiene por encima, lo divide en unidades más pequeñas (si no es aún lo suficientemente pequeño) y transmite las unidades más pequeñas a la capa de red. La capa de transporte en la estación de destino vuelve a ensamblar el mensaje.
  • Confirmación de mensaje: proporciona una entrega de mensajes confiable de extremo a extremo con confirmaciones.
  • Control del tráfico de mensajes: indica a la estación de transmisión que "dé marcha atrás" cuando no haya ningún búfer de mensaje disponible.
  • Multiplexación de sesión: multiplexa varias secuencias de mensajes, o sesiones, en un vínculo lógico y realiza un seguimiento de qué mensajes pertenecen a qué sesiones (consulte la capa de sesiones). 

CAPA 3 DE MODELO OSI EJEMPLO

La capa de red controla el funcionamiento de la subred, decidiendo qué ruta de acceso física deberían tomar los datos en función de las condiciones de la red, la prioridad de servicio y otros factores. Proporciona:

  • Enrutamiento: enruta tramas entre redes.
  • Control de tráfico de subred: los enrutadores (sistemas intermedios de capa de red) pueden indicar a una estación emisora que "reduzca" su transmisión de tramas cuando el búfer del enrutador se llene.
  • Fragmentación de trama: si determina que el tamaño de la unidad de transmisión máxima (MTU) que sigue en el enrutador es inferior al tamaño de la trama, un enrutador puede fragmentar una trama para la transmisión y volver a ensamblarla en la estación de destino.
  • Asignación de direcciones lógico-físicas: traduce direcciones lógicas, o nombres, en direcciones físicas.
  • Cuentas de uso de subred: dispone de funciones de contabilidad para realizar un seguimiento de las tramas reenviadas por sistemas intermedios de subred con el fin de producir información de facturación. 

CAPA 2 DE MODELO OSI EJEMPLO ♥


La capa de vínculo de datos ofrece una transferencia sin errores de tramas de datos desde un nodo a otro a través de la capa física, permitiendo a las capas por encima asumir virtualmente la transmisión sin errores a través del vínculo. Para ello, la capa de vínculo de datos proporciona:

  • Establecimiento y finalización de vínculos: establece y finaliza el vínculo lógico entre dos nodos.
  • Control del tráfico de tramas: indica al nodo de transmisión que "dé marcha atrás" cuando no haya ningún búfer de trama disponible.
  • Secuenciación de tramas: transmite y recibe tramas secuencialmente.
  • Confirmación de trama: proporciona/espera confirmaciones de trama. Detecta errores y se recupera de ellos cuando se producen en la capa física mediante la retransmisión de tramas no confirmadas y el control de la recepción de tramas duplicadas.
  • Delimitación de trama: crea y reconoce los límites de la trama.
  • Comprobación de errores de trama: comprueba la integridad de las tramas recibidas.
  • Administración de acceso al medio: determina si el nodo "tiene derecho" a utilizar el medio físico. 

CAPA 1 MODELO OSI EJEMPLO ♥

La capa física define las características físicas del medio, por ejemplo cómo representar un bit en éste. Otra función de la capa física es definir el medio mismo para la tecnología particular, por ejemplo, ¿cuál es el medio para ethernet 100baseT?, eso lo indica la capa física de ésta tecnología, pero si habláramos de 100baseF el medio sería distinto. Lo anterior nos lleva a que la capa física de una tecnología define también cómo son los conectores de la misma, continuando con nuestro ejemplo, para 100baseT los conectores son bananas RJ-45 (se les suele llamar Plug al conector macho y Jack al hembra) pero si habláramos de 100baseF los conectores serían conectores ST y ya que el medio es óptica. En otras palabras, la capa física normaliza la tecnología, de tal manera que sin importar el fabricante, dispositivos de la misma tecnología deben cumplir con la especificación de capa física de ésta. La capa física se ocupa fundamentalmente por el transporte seguro de los bits por un medio definido, de ahí que la unidad básica de información en ésta capa sean los bits. Como ésta se encarga del medio y del transporte de bits en él, debe definir cosas como tipo de señales y valores mínimos que se pueden permitir en el receptor, valores máximos en el transmisor y rapidez de las transiciones (por ejemplo de transiciones de voltaje si hablamos de medio de cobre).


MODELO OSI ♥

El modelo de referencia OSI -Open System Interconnection- es la forma en que la ISO -International Standards Organization- ve las etapas en que se desarrolla un proceso de comunicaciones en redes de datos. El modelo tiene una historia y a veces puede resultar complejo de comprender, pero como vamos a ver en esta entrada no lo es tanto como parece.
Para comprender el contexto de los modelos de comunicación por capas, hay que partir de la base de que cuando aparece una nueva tecnología de red, los dispositivos que la soportan con frecuencia usan varios protocolos simultáneamente. El ejemplo más claro de ésto es TCP/IP: cualquier estación que soporte esta tecnología, inherentemente soporta otros protocolos aparte de TCP e IP (que son protocolos independientes uno del otro), por ejemplo, debe soportar UDP e ICMP entre otros.
En ese caso cada protocolo cumple unas funciones especiales dentro del propósito completo de la tecnología o las necesidades particulares de comunicación y ahí es donde entran los modelos. Un modelo de comunicación por capas define las funciones específicas que realiza la tecnología en particular, las agrupa y usa tales grupos para encajar sus protocolos dentro de ellos. Se dice que los modelos son en capas porque las  funciones definidas se complementan unas a otras y se realizan operaciones sucesivas sobre la información, de tal manera que ciertas funciones siempre van a preceder a otras cuando se envía la información y se ejecutan en orden inverso cuando se recibe, lo que evoca una pila (stack), es decir una acumulación de cosas una encima de la otra donde para sacar lo que se puso primero antes hay que quitar lo que está encima.


DIBUJOS DE ARQUITECTURA TOKEN-RING ♥♥





ARQUITECTURA TOKEN RING ♥♥

 El problema con Ethernet es que la distribución del acceso al medio e aleatoria, por lo que puede ser injusta, perjudicando a un computador durante un periodo de tiempo.
En algunos casos es muy importante garantizar un acceso igualitario al medio, de modo de garantizar que siempre podremos transmitir, independientemente de la carga.
Por razones de justicia en el acceso, típicamente estas redes se organizan en anillo, de modo de que el token pueda circular en forma natural.
El token es un paquete físico especial, que no debe confundirse con un paquete de datos. Ninguna estación puede retener el token por más de un tiempo dado (10 ms).        Intenta aprovechar el ancho de banda a un 100%.
·         ·         Las redes Token Ring originalmente fueron desarrolladas por IBM en los años 1970s. Este fue el primer tipo de Red de Area Local de la tecnología IBM (LAN) Las especificaciones de IEEE 802.5 son casi idénticas en cuanto a compatibilidad con las redes de IBM's Token Ring. En base a las especificaciones de esta red se modeló es estándar IEEE 802.5.
El término Token Ring es generalmente usado para referirnos a ambas redes, IBM's Token Ring e IEEE 802.5.
Comparación Token Ring/IEEE 802.5
·         ·         Redes Token Ring e IEEE 802.5 son básicamente compatibles, a pesar que las especificaciones difieran relativamente de menor manera.
Las redes IBM's Token Ring se refiere a las terminales conectadas a un dispositivo llamado multistation access unit (MSAU), mientras que IEEE 802.5 no especifica un tipo de topología.
Otras diferencias existentes son el tipo de medio, en IEEE 802.5 no se especifica un medio, mientras que en redes IBM Token Ring se utiliza par trenzado. En la siguiente figura se muestran algunas características y diferencias de ambos tipos de red:
Token Ring
Las redes basadas en (token passing) basan el control de acceso al medio en la posesión de un token (paquete con un contenido especial que le permite transmitir a la estación que lo tiene). Cuando ninguna estación necesita transmitir, el token va circulando por la red de una a otra estación. Cuando una estación transmite una determinada cantidad de información debe pasar el token a la siguiente. Cada estación puede mantener el token por un periodo limitado de tiempo.
Las redes de tipo token ring tienen una topología en anillo y están definidas en la especificación IEEE 802.5 para la velocidad de transmisión de 4 Mbits/s. Existen redes token ring de 16 Mbits/s, pero no están definidas en ninguna especificación de IEEE.Los grupos locales de dispositivos en una red Token Ring se conectan a través de una unidad de interfaz llamada MAU. La MAU contiene un pequeño transformador de aislamiento para cada dispositivo conectado, el cual brinda protección similar a la de Local Talk. El estándar IEEE 802.5 para las redes Token Ring no contiene ninguna referencia específica a los requisitos de aislamiento. Por lo tanto la susceptibilidad de las redes Token Ring a las interferencias puede variar significativamente entre diferentes fabricantes.

DIBUJOS DE ARQUITECTURA ARCNET ♥





ARQUITECTURA ARCNET ♥♥

Es conocida como un arreglo de redes estrella, es decir una serie de redes estrella se comunican entre sí.
ARCNET se introdujo al mercado de redes como la solución a los problemas presentados por la red tipo estrella, como son la limitación de estaciones de trabajo, separación entre las estaciones de trabajo y el servidor, etc.
ARCNET tiene la facilidad de instalar estaciones de trabajo sin preocuparnos por la degradación de la velocidad del sistema, ya que para tal caso se cuenta con más de un servidor de red.
Con las tarjetas de interfase es posible instalar hasta 128 estaciones de trabajo por cada servidor que se conecte a la red.
Cada una de las estaciones de trabajo puede estar conectada a una distancia máxima de 1200 metros con respecto al servidor de la red, esta distancia equivale a casi el triple de la permitida por la red tipo estrella.
El cable para esta conexión es mucho más caro porque se trata de un RG-62 coaxial que es usado no sólo para conectar esta red entre sí, también utilizado por IBM para la conexión de sus computadoras 3270, esta es otra ventaja, ya que si se cuenta con una instalación de este tipo se puede aprovechar para instalar una red Novell ARCNET.
Una de las grandes ventajas de Novell es el uso de dos tipos de repetidores, el activo y el pasivo, ambas unidades sirven para distribuir la señal de la red entera, de tal forma que una señal determinada llega fácilmente a una estación de trabajo en particular.

DIBUJOS DE ARQUITECTURA ETHERNET ♥





ARQUITECTURA ETHERNET ♥


 
Busca en más de 459.000 hoteles
Sin cargos de gestión • Ofertas especiales • Precio Mínimo Garantizado

Hablamos tu idioma
booking.com
?X
La arquitectura Ethernet puede definirse como una red de conmutación de paquetes de acceso múltiple (medio compartido) y de difusión amplia ("Broadcast”). Esta arquitectura provee detección de errores, pero no corrección.



Ethernet es un medio compartido, ya que cualquier mensaje transmitido es escuchado por todos los equipos conectados y el ancho de banda disponible es compartido por ellos. En el Ethernet compartido existen reglas para enviar los paquetes evitando conflictos y protegiendo la integridad de los datos. Los nodos en una red Ethernet transmiten paquetes cuando ellos determinan que la red no está siendo usada.


La topología física es la de una estrella pero organizada alrededor de un conmutador. El conmutador usa mecanismos de conmutación y filtrado. Además este sólo transmite el mensaje al puerto adecuado mientras que los otros puertos permanecerán libres para otras transmisiones que pueden ser realizadas simultáneamente.

El tráfico transmitido y recibido al no ser transferido a todos los puertos genera mayor dificultad para rastrear lo que está pasando.

lunes, 7 de abril de 2014

ROUTER ♥♥

Un “Router” es como su propio nombre indica, y fácilmente se puede traducir, un enrutador o encaminador que nos sirve para interconectar redes de ordenadores y que actualmente implementan puertas de acceso a internet como son los router para ADSL, los de Cable o 3G.
Son ya hoy por hoy en su mayoría dispositivos de Hardware desarrollados por fabricantes como Cisco o Juniper y cuyo software esta desarrollado por esas mismas empresas, aunque también pueden ser ordenadores implementados con los protocolos de red (RIP, OSPF, IGRP, EIGRP y BGP) para los cuales existen ya paquetes (normalmente de software libre) con los distintos Drivers como pueden ser: Quagga, Vyatta, Zebra o ZebOs.
Es decir, si tienes un solo ordenador lo normal sería que tuvieras un moden que te serviría para conectarte a internet a través de la red de tu proveedor en el caso que nos ocupa, pero si tienes más de un ordenador lo habitual es que tengas un router para que tu red pueda conectarse a la red de tu proveedor y este te conecte a internet compartiendo el ancho de banda que hallas contratado entre los distintos ordenadores de tu red. De esta manera el router se convierte en el intermediario entre tu red local y privada de tu casa e internet.

SWITCH ♥♥

Un switch es un dispositivo de propósito especial diseñado para resolver problemas de rendimiento en la red, debido a anchos de banda pequeños y embotellamientos. El switch puede agregar mayor ancho de banda, acelerar la salida de paquetes, reducir tiempo de espera y bajar el costo por puerto.Opera en la capa 2 del modelo OSI y reenvía los paquetes en base a la dirección MAC.El switch segmenta económicamente la red dentro de pequeños dominios de colisiones, obteniendo un alto porcentaje de ancho de banda para cada estación final. No están diseñados con el propósito principal de un control íntimo sobre la red o como la fuente última de seguridad, redundancia o manejo.



HUB ♥

Un hub USB es un dispositivo que permite concentrar varios puertos USB, permitiendo la conexión con una máquina mediante un solo bus o cable.
Los hub USB se integran a menudo en la propia computadora, en teclados o, más raramente, en monitores o impresoras. Los hub USB vienen en una variedad amplia de formas: similares a un concentrador, diseños pequeños previstos para ser conectado directamente en el puerto USB de la computadora, etc.


REPETIDOR ♥

Un repetidor es un dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir distancias más largas sin degradación o con una degradación tolerable.
En telecomunicación el término repetidor tiene el siguientes significado:

“Dispositivo analógico que amplifica una señal de entrada, independientemente de su naturaleza (analógica o digital).”

En el caso de señales digitales el repetidor se suele denominar regenerador ya que, de hecho, la señal de salida es una señal regenerada a partir de la de entrada.
Los repetidores se utilizan tanto en cables de cobre portadores de señales eléctricas como en cables de fibra óptica portadores de luz.

CONCENTRADOR ♥

Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.Son la base para las redes de topología tipo estrella, También es llamado repetidor multipuerto.
Existen 3 clases de hubs, las cuales son:

- Pasivo: No necesita energía eléctrica. Se dedica a la interconexion.
Activo: Necesita alimentación. Además de concentrar el cableado, regeneran la señal, eliminan el ruido y amplifican la señal .
Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador
 El concentrador envía información todos los ordenadores que están conectados a él. Sin importar que halla un solo destinatario de la información.

2. Este tráfico genera más probabilidades de colisión. Una colisión se produce cuando un ordenador envia información de forma simultánea que otro ordenador. Al chocar los dos mensajes se pierden y es necesario retransmitir.

3. Un concentrador no tiene capacidad de almacenar nada.

4. Su precio es barato. Añade retardos derivados de la transmisión del paquete a todos los equipos de la red (incluyendo los que no son destinatarios del mismo).


TECNOLOGIAS Y SISTEMAS DE CONMUTACIÓN Y ERUPTAMIENTO♥


ELABORAR CABLES DE RED

Instrucciones para el montaje del cableado: RJ-45.
Para la realización de latiguillos con conectores modulares RJ-45 se utiliza cable flexible UTP (Unshielded 
Twister Pair) que se compone de 8 conductores trenzados par a par y todos ellos recubiertos por una funda 
externa de protección, siendo el colorido de estos pares uniforme en uno de los conductores y el otro blanco 
con trazos del color de su pareja. El colorido de estos cables. según establecen las normas, es:
• Naranja. 
• Blanco/ Naranja. 
• Verde. 
• Blanco/ Verde. 
• Azul. 
• Blanco/ Azul. 
• Marrón. 
• Blanco/ Marrón.

Pasos:
1. Cortar un trozo de cable de la longitud deseada para el latiguillo.
2. Pelar el recubrimiento externo del cable en una longitud aproximada de 1,5 cm en el extremo 
donde vayamos a colocar el conector modular RJ-45. Al realizar este proceso tendremos la 
precaución de no dañar el aislamiento de los conductores interiores.
Para ello utilizaremos la siguiente herramienta:

CABLE DE FIBRA OPTICA ☻ ♥

La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.
Las fibras se utilizan amplia mente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio y superiores a las de cable convencional. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

CABLE PAR TRENZADO ♥♥

El cable de par trenzado consiste en dos alambres de cobre aislados que se trenzan de forma helicoidal, igual que una molécula de ADN. De esta forma el par trenzado constituye un circuito que puede transmitir datos. Esto se hace porque dos alambres paralelos constituyen una antena simple. Cuando se trenzan los alambres, las ondas se cancelan, por lo que la radiación del cable es menos efectiva. Sí la forma trenzada permite reducir la interferencia eléctrica tanto exterior como de pares cercanos.
Un cable de par trenzado está formado por un grupo de pares trenzados, normalmente cuatro, recubiertos por un material aislante. Cada uno de estos pares se identifica mediante un color.


CABLE COAXIAL ♥♥

El cable coaxialcoaxcable o coax  fue creado en la década de los 30 del Siglo XX, y es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla, blindaje o trenza, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante (también denominada chaqueta exterior).
El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido.
Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior.

ESTRUCTURA Y CONFIGURACIÓN DE MEDIOS DE TRANSMISIÓN FÍSICA ♥♥

El propósito fundamental de la estructura física de la red consiste en transportar, como flujo de bits, la información de una máquina a otra. Para realizar esta función se van a utilizar diversos medios de transmisión. 

Los cables son el componente básico de todo sistema de cableado. Existen diferentes tipos de cables.

En la actualidad existen básicamente tres tipos de cables factibles de ser utilizados para el cableado en el interior de edificios o entre edificio

ADAPTADORES DE RED ♥♥

Una tarjeta de red o adaptador de red es un periférico que permite la comunicación con aparatos conectados entre sí y también permite compartir recursos entre dos o más computadoras (discos durosCD-ROMimpresoras, etc). A las tarjetas de red también se les llama NIC (por network interface card; en español "tarjeta de interfaz de red"). Hay diversos tipos de adaptadores en función del tipo de cableado o arquitectura que se utilice en la red (coaxial fino, coaxial grueso, Token Ring, etc.), pero actualmente el más común es del tipo Ethernet utilizando una interfaz o conector RJ-45.


PROTOCOLOS DE COMUNICACIÓN

Es un conjunto de reglas y normas que permiten que dos o más entidades de un sistema de comunicacion se comuniquen entre ellos para transmitir información  por medio de cualquier tipo de variación de una magnitud fisica. Se trata de las reglas o el estándar que define la sintaxis, semantica  y sincronización de la comunicación, así como posibles metodos de recuperación. Los protocolos pueden ser implementados por Hardware, Software, o una combinación de ambos.


TOPODOLOGIA DE RED DE ÁREA LOCAL HIBRIDAS ♥♥

Híbridas o mixta: El bus lineal, la estrella y el anillo se combinan algunas veces para formar combinaciones de redes híbridas. 
Anillo en Estrella: Esta topología se utiliza con el fin de facilitar la administración de la red. Físicamente, la red es una estrella centralizada en un concentrador, mientras que a nivel lógico, la red es un anillo. 
"Bus" en Estrella: El fin es igual a la topología anterior. En este caso la red es un "bus" que se cablea físicamente como una estrella por medio de concentradores. 
Estrella Jerárquica: Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada par formar una red jerárquica


TOPOLOGIA DE RED DE ÁREA LOCAL BUS ♥

Esta topología permite que todas las estaciones reciban la información que se transmite, una estación transmite y todas las restantes escuchan. Consiste en un cable con un terminador en cada extremo del que se cuelgan todos los elementos de una red. Todos los nodos de la red están unidos a este cable: el cual recibe el nombre de "Backbone Cable". Tanto Ethernet como Local Talk pueden utilizar esta topología. 
El bus es pasivo, no se produce regeneración de las señales en cada nodo. Los nodos en una red de "bus" transmiten la información y esperan que ésta no vaya a chocar con otra información transmitida por otro de los nodos. Si esto ocurre, cada nodo espera una pequeña cantidad de tiempo al azar, después intenta retransmitir la información




TOPOLOGIA DE RED DE ÁREA LOCAL ANILLO ♥

La topología de anillo conecta los nodos punto a punto, formando un anillo físico y consiste en conectar varios nodos a una red que tiene una serie de repetidores. Cuando un nodo transmite información a otro la información pasa por cada repetidor hasta llegar al nodo deseado. El problema principal de esta topología es que los repetidores son unidireccionales (siempre van en el mismo sentido). Después de pasar los datos enviados a otro nodo por dicho nodo, continua circulando por la red hasta llegar de nuevo al nodo de origen, donde es eliminado. Esta topología no tiene problemas por la congestión de tráfico, pero si hay una rotura de un enlace, se produciría un fallo general en la red.



TOPOLOGIA DE RED DE AREA LOCAL ESTRELLA ☻

Una red en estrella es una red en la cual las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de éste. Los dispositivos no están directamente conectados entre sí, además de que no se permite tanto tráfico de información. Dada su transmisión, una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco.
Se utiliza sobre todo para redes locales. La mayoría de las redes de área local que tienen un enrutador (router), un conmutador (switch) o un concentrador (hub) siguen esta topología. El nodo central en éstas sería el enrutador, el conmutador o el concentrador, por el que pasan todos los paquetes de usuarios.

TOPOLOGIA DE RED DE ÁREA LOCAL LOGICA. . ♥

La topología lógica de una red es la forma en que los hosts se comunican a través del medio. Los dos tipos más comunes de topologías lógicas son broadcast y transmisión de tokens.
  • La topología broadcast simplemente significa que cada host envía sus datos hacia todos los demás hosts del medio de red. No existe una orden que las estaciones deban seguir para utilizar la red. Es por orden de llegada, es como funciona Ethernet
  • La topología transmisión de tokens controla el acceso a la red mediante la transmisión de un token electrónico a cada host de forma secuencial. Cuando un host recibe el token, ese host puede enviar datos a través de la red. Si el host no tiene ningún dato para enviar, transmite el token al siguiente host y el proceso se vuelve a repetir. Dos ejemplos de redes que utilizan la transmisión de tokens son Token Ring y la Interfaz de datos distribuida por fibra . Arcenet es una variación de Token Ring.  Arcnet es la transmisión de tokens en una topología de bus.

TRANSMISION SÍNCRONA Y ASÍNCRONA ♥♥

La transmisión síncrona es una técnica que consiste en el envío de una trama de datos (conjunto de caracteres) que configura un bloque de información comenzando con un conjunto de bits de sincronismo (SYN) y terminando con otro conjunto de bits de final de bloque (ETB). En este caso, los bits de sincronismo tienen la función de sincronizar los relojes existentes tanto en el emisor como en el receptor, de tal forma que estos controlan la duración de cada bit y carácter.
Dicha transmisión se realiza con un ritmo que se genera centralizadamente en la red y es el mismo para el emisor como para el receptor. La información se transmite entre dos grupos, denominados delimitadores
La transmisión asíncrona se da lugar cuando el proceso de sincronización entre emisor y receptor se realiza en cada palabra de código transmitido. Esta sincronización se lleva a cabo a través de unos bits especiales que definen el entorno de cada código.
También se dice que se establece una relación asíncrona cuando no hay ninguna relación temporal entre la estación que transmite y la que recibe. Es decir, el ritmo de presentación de la información al destino no tiene por qué coincidir con el ritmo de presentación de la información por la fuente.

BANDA ANCHA POR CABLE♥


Se refiere a la distribución de un servicio de conectividad a Internet sobre esta infraestructura de telecomunicaciones.
La banda ancha por cable que puede referirse también a los cablemodems, se utilizan principalmente para distribuir el acceso a Internet de banda ancha, aprovechando el ancho de banda que no se utiliza en la red de TV por cable.
Los abonados de un mismo vecindario comparten el ancho de banda proporcionado por una única línea de cable coaxial. Por lo tanto, la velocidad de conexión puede variar dependiendo de cuanta gente esté usando el servicio al mismo tiempo.
A menudo, la idea de una línea compartida se considera como un punto débil de la conexión a Internet por cable. Desde un punto de vista técnico, todas las redes, incluyendo los servicios DSL, comparten una cantidad fija de ancho de banda entre multitud de usuarios -- pero ya que las redes de cable tienden a abarcar áreas más grandes que los servicios DSL, se debe tener más cuidado para asegurar un buen rendimiento en la red.


TRANSMISION ANALOGICA Y DIGITAL


Los datos analógicos toman valores continuos y los digitales , valores discretos . 

Una señal analógica es una señal continua que se propaga por ciertos medios . 

Una señal digital es una serie de pulsos que se transmiten a través de un cable ya que son pulsos eléctricos . 

Los datos analógicos se pueden representar por una señal electromagnética con el mismo espectro que los datos . 

Los datos digitales se suelen representar por una serie de pulsos de tensión que representan los valores binarios de la señal . 

La transmisión analógica es una forma de transmitir señales analógicas ( que pueden contener datos analógicos o datos digitales ). El problema de la transmisión analógica es que la señal se debilita con la distancia , por lo que hay que utilizar amplificadores de señal cada cierta distancia . 

La transmisión digital tiene el problema de que la señal se atenúa y distorsiona con la distancia , por lo que cada cierta distancia hay que introducir repetidores de señal . 

viernes, 28 de marzo de 2014

TOPOLOGÍA

TOPOLOGÍA
La topología de red se define como una familia de comunicación usada por los computadores que conforman una red para intercambiar datos. En otras palabras, la forma en que está diseñada la red, sea en el plano físico o lógico. El concepto de red puede definirse como "conjunto de nodos interconectados". Un nodo es el punto en el que una curva se intercepta a sí misma. Lo que un nodo es concretamente, depende del tipo de redes a que nos refiramos.
Un ejemplo claro de esto es la topología de árbol, la cual es llamada así por su apariencia estética, por la cual puede comenzar con la inserción del servicio de internet desde el proveedor, pasando por el router, luego por un switch y este deriva a otro switch u otro router o sencillamente a los hosts (estaciones de trabajo), el resultado de esto es una red con apariencia de árbol porque desde el primer router que se tiene se ramifica la distribución de internet dando lugar a la creación de nuevas redes o subredes tanto internas como externas. Además de la topología estética, se puede dar una topología lógica a la red y eso dependerá de lo que se necesite en el momento.
En algunos casos se puede usar la palabra arquitectura en un sentido relajado para hablar a la vez de la disposición física del cableado y de cómo el protocolo considera dicho cableado. Así, en un anillo con una MAU podemos decir que tenemos unatopología en anillo, o de que se trata de un anillo con topología en estrella.
La topología de red la determina únicamente la configuración de las conexiones entre nodos. La distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma.